Q-ball reconstruction of multimodal fiber orientations using the spherical harmonic basis.

نویسندگان

  • Christopher P Hess
  • Pratik Mukherjee
  • Eric T Han
  • Duan Xu
  • Daniel B Vigneron
چکیده

Diffusion tensor imaging (DTI) accurately delineates white matter pathways when the Gaussian model of diffusion is valid. However, DTI yields erroneous results when diffusion takes on a more complex distribution, as is the case in the brain when fiber tracts cross. High angular resolution diffusion imaging (HARDI) overcomes this limitation of DTI by more fully characterizing the angular dependence of intravoxel diffusion. Among the various HARDI methods that have been proposed, QBI offers advantages such as linearity, model independence, and relatively easy implementation. In this work, reconstruction of the q-ball orientation distribution function (ODF) is reformulated in terms of spherical harmonic basis functions, yielding an analytic solution with useful properties of a frequency domain representation. The harmonic basis is parsimonious for typical b-values, which enables the ODF to be synthesized from a relatively small number of noisy measurements and thus brings the technique closer to clinical feasibility from the standpoint of total imaging time. The proposed method is assessed using Monte Carlo computer simulations and compared with conventional q-ball reconstruction using spherical RBFs. In vivo results from 3T whole-brain HARDI of adult volunteers are also provided to verify the underlying mathematical theory.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Q-ball imaging.

Magnetic resonance diffusion tensor imaging (DTI) provides a powerful tool for mapping neural histoarchitecture in vivo. However, DTI can only resolve a single fiber orientation within each imaging voxel due to the constraints of the tensor model. For example, DTI cannot resolve fibers crossing, bending, or twisting within an individual voxel. Intravoxel fiber crossing can be resolved using q-s...

متن کامل

ODF MAXIMA EXTRACTION IN SPHERICAL HARMONIC REPRESENTATION VIA ANALYTICAL SEARCH SPACE REDUCTION By

By revealing complex fiber structure through the orientation distribution function (ODF), q-ball imaging has recently become a popular reconstruction technique in diffusion-weighted MRI. In this paper, we propose an analytical dimension reduction approach to ODF maxima extraction. We show that by expressing the ODF, or any antipodally symmetric spherical function, in the common fourth order rea...

متن کامل

Spherical wavelet transform for ODF sharpening

The choice of local HARDI reconstruction technique is crucial for discerning multiple fiber orientations, which is itself of substantial importance for tractography, and reliable and accurate assessment of white matter fiber geometry. Due to the complexity of the diffusion process and its milieu, distinct diffusion compartments can have different frequency signatures, making the HARDI signal sp...

متن کامل

RECONSTRUCTION OF THE ORIENTATION DISTRIBUTION FUNCTION IN SINGLE AND MULTIPLE SHELL Q-BALL IMAGING WITHIN CONSTANT SOLID ANGLE By

Q-ball imaging (QBI) is a high angular resolution diffusion imaging (HARDI) technique which has been proven very successful in resolving multiple intravoxel fiber orientations in MR images. The standard computation of the orientation distribution function (ODF, the probability of diffusion in a given direction) from q-ball data uses linear radial projection, neglecting the change in the volume ...

متن کامل

Sparse Solution of Fiber Orientation Distribution Function by Diffusion Decomposition

Fiber orientation is the key information in diffusion tractography. Several deconvolution methods have been proposed to obtain fiber orientations by estimating a fiber orientation distribution function (ODF). However, the L 2 regularization used in deconvolution often leads to false fibers that compromise the specificity of the results. To address this problem, we propose a method called diffus...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Magnetic resonance in medicine

دوره 56 1  شماره 

صفحات  -

تاریخ انتشار 2006